skip to main content


Search for: All records

Creators/Authors contains: "Morrison, E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Flow-regulated discharges of water from control structures into estuaries result in hydrologic and water chemistry conditions that impact spatial and temporal variability in the structure and biomass of phytoplankton communities, including the potential for harmful algal blooms (HABs). The relationships between regulated Caloosahatchee River (i.e., C-43 Canal) discharges and phytoplankton communities in the Caloosahatchee Estuary and adjacent nearshore regions on the southwest coast of Florida were investigated during two study periods, 2009–2010 and 2018–2019. During periods of low to moderate discharge rates, when mesohaline conditions predominated in the estuary, and water residence times were comparatively long, major blooms of the HAB dinoflagellate speciesAkashiwo sanguineawere observed in the estuary. Periods of high discharge were characterized by comparatively low phytoplankton biomass in the estuary and greater influence of a wide range of freshwater taxa in the upper reaches. By contrast, intense blooms of the toxic dinoflagellateKarenia brevisin the nearshore region outside of the estuary were observed during high discharge periods in 2018–2019. The latter events were significantly associated with elevated levels of nitrogen in the estuary compared to lower average concentrations in the 2009–2010 study period. The relationships observed in this study provide insights into the importance of managing regulated discharge regimes to minimize adverse impacts of HABs on the health of the estuary and related coastal environments.

     
    more » « less
  2. Abstract

    The Locust simulation package is a new C++ software tool developed to simulate the measurement of time-varying electromagnetic fields using RF detection techniques. Modularity and flexibility allow for arbitrary input signals, while concurrently supporting tight integration with physics-based simulations as input. External signals driven by the Kassiopeia particle tracking package are discussed, demonstrating conditional feedback between Locust and Kassiopeia during software execution. An application of the simulation to the Project 8 experiment is described. Locust is publicly available athttps://github.com/project8/locust_mc.

     
    more » « less
  3. Abstract

    The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector.

     
    more » « less